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The Cox Hazard Model for Claims Data 
by Samuel Berestizhevsky and Tanya Kolosova

ABSTRACT

Claim management requires applying statistical techniques in 

the analysis and interpretation of the claims data. The central 

piece of claim management is claims modeling and predic-

tion. Two strategies are commonly used by insurers to analyze 

claims: the two-part approach that decomposes claims cost into 

frequency and severity components, and the pure premium 

approach that uses the Tweedie distribution.

In this paper, we evaluate an additional approach: time-to-

event modeling. We provide a general framework to look into 

the process of modeling and prediction of claims using the 

Cox hazard model. The Cox hazard model is a standard tool 

in survival analysis for studying the dependence of a hazard 

rate on covariates and time. Although the Cox hazard model is 

very popular in statistics, in practice, data to be analyzed often 

fails to hold assumptions underlying the Cox model. We use a 

Bayesian approach to survival analysis to deal with violations 

of assumptions of the Cox hazard model.

This paper is a case study intended to indicate a possible 

application of the Cox hazard model to workers’ compensation 

insurance, particularly the occurrence of claims while dealing 

with violations of the assumptions of this model.
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This paper is a case study 
intended to indicate possible 
applications to workers’ compen-
sation insurance, particularly the 
occurrence of claims. We study 
workers’ compensation claims 
for the period of 2  years from 

November  01, 2014, to October  31, 2016. Claims 
data was provided by a leading worker compensa-
tion insurer that writes a significant amount of direct 
premium annually on a countrywide basis. The risk 
of occurrence of claims is studied, modeled, and 
predicted for different industries within several 
U.S. states.

2.  Data

The present case study is based on the following 
policy and claims data:

1.	 Start and end date of the policy;
2.	 Industry in which policy was issued;
3.	 Date of a claim occurrence;
4.	 Date of a claim reported;
5.	 State where a claim was reported.

In this study, we focus our analysis on claims that 
led to payments.

3.  The Cox model for claim event 
analysis

Survival (or time-to-event) function S(t) describes 
the proportion of policies “surviving” without a 
claim to or beyond a given time (in days):

S t P T t( ) ( )= >

where:
	T	–	survival time of a randomly selected policy
	 t	–	a specific point in time.

Hazard function h(t) describes the instantaneous 
claims rate at time t:

h t
P t T t t T t

tt
( ) ( )= ≤ < + ∆ ≥
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lim .
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1.  Introduction

The term “survival data” has 
been used in a broad meaning for  
data involving time to a certain 
event. This event may be the 
appearance of a tumor, the devel-
opment of some disease, cessation of smoking, etc. 
Applications of the statistical methods for survival  
data analysis have been extended beyond the bio-
medical field and used in areas of reliability engi-
neering (lifetime of electronic devices, components 
or systems), criminology (felons’ time to parole), 
sociology (duration of first marriage), insurance 
(workers’ compensation claims), etc. Depending on  
the area of application, different terms are used: 
survival analysis in biological science; reliability 
analysis in engineering; duration analysis in social 
science; and time-to-event analysis in insurance. 
Here, we use terms that are more often used in the 
insurance domain.

A central quantity in survival (time-to-event) 
analysis is the hazard function. The most common 
approach to model covariate effects on survival 
(time-to-event) is the Cox hazard model developed 
and introduced by Cox (1972). There are several 
important assumptions that need to be assessed 
before the model results can be safely applied (Lee 
1992). First, the proportional hazards assumption 
means that hazard functions are proportional over 
time. Second, the explanatory variable acts directly 
on the baseline hazard function and remains con-
stant over time. Although the Cox hazard model 
is very popular in statistics, in practice, data to  
be analyzed often fails to meet these assumptions. 
For example, when a cause of claims interacts with 
time, the proportional hazard assumption fails. Or, 
when the hazard ratio changes over time, the pro-
portional hazard assumption is violated. We present 
the application of a Bayesian approach to survival 
(time-to-event) analysis that allows the analyst to 
deal with violations of assumptions of the Cox  
hazard model, thus assuring that model results can 
be trusted.

There are several  
important assumptions that 
need to be assessed before 

the model results can be 
safely applied
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	 x1, . . . , xk	–	the covariates
	 h0(t)	–	�the baseline hazard function that  

is the hazard function for the sub-
ject whose covariates x1, . . . , xk all 
have values of 0

	 S0(t)	–	�the baseline survival function that  
is the survival function for the sub-
ject whose covariates x1, . . . , xk all 
have values of 0

	 1, . . . , k	–	the coefficients of the Cox model.

4.  Application of the Cox model  
to claims analysis

We identify three main goals of time-to-event 
analysis for workers’ compensation claims:

1.	 Estimate survival (time-to-event) function S(t)
2.	 Estimate effects  of industry covariate x1, . . . , xk

3.	 Compare survival (time-to-event) functions for 
different industries.

In order to build an appropriate model, we have 
to address the nature of the claims process. In con-
trast with biomedical applications where an event of 
interest is, for example, death and thus can happen 
only once, claims happen multiple times in workers’ 
compensation insurance, because, for each policy, 
there are possible multiple claims. There are many 
different models that one can use to model repeated 
events in a time-to-event analysis (Hosmer and  
Lemeshow 1999). The choice depends on the data 
to be analyzed and the research questions to be 
answered.

A possible approach is to treat each claim as a 
distinct observation, but in this case, we have to  
consider the dependence of multiple claims that 
belong to the same policy. The dependence might 
arise from unobserved heterogeneity. Using some 
simple ad hoc ways to detect dependence (Allison 
2012), we conclude that the dependence among 
time-to-event intervals of claims that belong to the 
same policy is so small that it has a negligible effect 
on the estimates of the model. Thus, we consider 
each claim as a single event and can build models 

In other words, hazard function h(t) at a time t  
specifies an instantaneous rate at which a claim 
occurs, given that it has not occurred up to time t. 
The hazard function is usually more informative 
about the underlying mechanism of claims than 
survival function.

Cox (1972) proposed a model that doesn’t require 
the assumption that times of events follow a certain 
probability distribution. As a consequence, the Cox 
model is considerably robust.

The Cox hazard model can be written as:

h t h t xi j ij
j

k

∑( ) ( )= β
=

exp0
1

where:
	 hi(t)	–	the hazard function for subject i at time t
	h0(t)	–	�the baseline hazard function that is the  

hazard function for the subject whose 
covariates x1, . . . , xk all have values of 0.

The Cox hazard model is also called the propor-
tional hazard model if the hazard for any subject is a 
fixed hazard ratio (HR) relative to any other subject:

HR h t h t

h t x h t x

i p

j ijj

k
j pjj

k∑ ∑( ) ( )
( )

( ) ( )

( )=

= β β= =exp exp .0 1 0 1

Baseline hazard h0(t) cancels out, and HR is  
constant with respect to time:

HR exp x xj ij pjj

k∑ ( )= β −= .
1

Estimated survival (time-to-event) probability at 
time t can be calculated using an estimated baseline 
hazard function h0(t) and estimated  coefficients:

S t S ti
xj ij

j

k∑( ) ( )= β
=0

exp
1

S t h u du
t

∫( ) ( )=0 00

where:
	 Si(t)	–	�the time-to-event function for sub-

ject i at time t
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the beginning of the follow-up time for each subject. 
Furthermore, each subject is considered to be at risk 
for all events, regardless of how many events each 
subject actually experienced. Thus, the marginal 
model considers each event separately and models 
all the available data for the specific event. This 
model fits our application needs and is used for  
the analysis.

5.  Data transformation

We analyze workers’ compensation claims data 
for the two-year period, the so-called observation 
period, from November 01, 2014, till October 31, 
2016. Each claim is associated with an industry to 
which the employer belongs, and with a state where 
the accident happened. For example, an employer 
that belongs to the entertainment industry with 
headquarters in New York state may have company  
offices in different other states, where accidents 
happen. To prepare this data for the marginal model, 
each claim event is considered as a separate process. 
The time to each event is calculated starting from 
the beginning of the observation period or from the 
beginning of the policy, whichever happens later. 
If there are no claim events for a policy during the 
observation period, the policy is said to be right-
censored at the end of the observation period or at 
the end of the policy, whichever happens earlier. 
Censoring is an important issue in survival analysis, 
representing a particular type of missing data and is 
usually required in order to avoid bias in survival 
analysis (Breslow 1974). A subject is said to be 
censored (Censor = 0) if a policy expired or was 
canceled, or if a claim event didn’t happen during the 
observation period. In both cases, we consider that 
the policy existed without claims at least as long as 
the duration of observation.

An example of data prepared for the marginal 
model is presented in Figure 1.

•	 Policy A starts before January; there are two claims 
that happened in May and June; policy ends in 
August.

that do not account for claims dependence within 
the same policy.

Following is a short review of different models.

4.1.  Counting process model

In the counting process model, each event is 
assumed to be independent, and a subject contributes 
to the risk set for an event as long as the subject is 
under observation at the time the event occurs. The 
data for each subject with multiple events is described 
as data for multiple subjects where each has delayed 
entry and is followed until the next event. This model 
ignores the order of the events, leaving each subject 
to be at risk for any event as long as it is still under 
observation at the time of the event. This model 
does not fit our application needs because the entry 
time is considered as a time of the previous event, 
and time-to-event is calculated as the time between  
consecutive events.

4.2.  Conditional model I

This conditional model assumes that it is not pos-
sible to be at risk for a subsequent event without 
having experienced the previous event (i.e., a subject 
cannot be at risk for the second event without having 
experienced the first one). In this model, the time 
interval of a subsequent event starts at the end of 
the time interval for the previous event. This model 
doesn’t fit our application needs because it introduces 
a dependency between consecutive claims.

4.3.  Conditional model II

This model differs from the previous model in the 
way the time intervals are structured. In this model, 
each time interval starts at zero and ends at the length 
of time until the next event. This model doesn’t fit 
our application because it introduces a dependency 
between claims within the same policy.

4.4.  Marginal model

In the marginal model, each event is considered as 
a separate process. The time for each event starts at 



The Cox Hazard Model for Claims Data 

VOLUME 13/ISSUE 2	 CASUALTY ACTUARIAL SOCIETY	 269

time at the beginning of the policy or beginning of 
the observation period, whichever is later.

6.  Cox model assumptions 
validation

In most insurance risk papers, the authors take 
the proportional hazard assumption for granted and 
make no attempt to check that it has not been violated 
in their data. That, however, is a strong assumption 
indeed (Gill and Schumacher 1987). Note that, when 
used inappropriately, statistical models may give 
rise to misleading conclusions. Therefore, it’s highly 
important to check underlying assumptions.

Perhaps the easiest and most commonly used 
graphical method for checking proportional hazard 
is the so-called ‘log-negative-log’ plot (Arjas 1988). 
For this method, one should plot ln(−ln(Si(t))) vs. 
ln(t) and look for parallelism – the constant distance 
between curves over time. This can be done only 
for categorical covariates. If the curves show a non-
parallel pattern, then the assumption of proportional 
hazard is violated, and, as a result, the analytical 
estimation of β coefficients is incorrect.

For claims in seven industries in Illinois, the log-
negative-log plot is presented in Figure 2. This plot 
shows that the proportional hazard model assump-
tion does not hold: the lines of the log-negative-log 
plot are not parallel, and intersect.

•	 Policy B starts in March; there is one claim in 
August; policy is canceled in October.

•	 Policy C starts in April; there are no claims in the 
observed period of time.

For this example, data is presented as shown in 
Table 1

This case study performs analysis and modeling 
on claims data for Illinois. The Illinois data contains 
claims for Consulting, Entertainment, Finance, Hospi-
tality, Manufacturing, Retail, and Utilities industries.

In our analysis, we assume that each claim event 
is independent within the policy and the industry. 
For example, if two claims are covered by the same 
policy, we consider these claims independent. In 
addition, if two claims are covered by different poli-
cies, we assume that the claims are independent and 
that the policies have no effect on risk. The data for 
each policy with multiple claim events is described 
as multiple claims, where each claim has an entry 

ClaimPolicy

1

A 2

3

B
4

5

C 6

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 1.  Claims data presentation

Table 1.  Claims data

Policy Claim Time-to-event Event Censor

A 1 5 1 1

A 2 6 2 1

A 3 8 3 0

B 4 6 1 1

B 5 8 2 0

C 6 9 1 0



Variance Advancing the Science of Risk

270	 CASUALTY ACTUARIAL SOCIETY	 VOLUME 13/ISSUE 2

	 x1, . . . , xk	–	the covariates
	 h0(t)	–	�the baseline hazard function that  

is the hazard function for the sub-
ject whose covariates x1, . . . , xk all 
have values of 0

	 gn(t)	–	�the function of time (time itself,  
log time, etc.)

	 1, . . . , k	–	the coefficients of the Cox model
	 n	–	�the coefficients of time-dependent 

covariates in the extended Cox 
model.

Applying this approach to the case of Illinois, our 
model looks like:

h t h t x season ti j j
j
∑( ) ( ) ( )= β + γ × ×



=

exp ln0
1

6

where
	 hi(t)	–	�the hazard function for industry i =  

1, . . . , 6 at time t, where industries 
are: Consulting, Entertainment, Finance, 
Hospitality, Manufacturing, and Retail

We use industry as a categorical covariate, assum-
ing that time-to-event (survival) functions vary by 
industry. It is wrong to assume that there is no impact 
on the baseline hazard function for different values of 
this covariate variable. For example, hazard changes 
for Retail depend on seasons, or Utilities depend on 
weather, or Hospitality and Entertainment depend 
on school breaks schedule.

All these conditions are latently depending on 
time, which means that the impact of the industry 
categorical variable does not remain constant over 
time, thus violating the assumptions of the Cox 
model. In order to account for season dependency, 
we introduce a time-dependent covariate for the 
winter season, and use an extended Cox model:

h t h t x x g ti j ij n in n
n

m

j

k

∑∑( ) ( ) ( )= β + γ



==

exp0
11

where:
	 hi(t)	–	�the hazard function for subject i at 

time t
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Figure 2.  Log-negative-log plot for Illinois
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where:
	t1	–	�the start day of the winter season relative to the 

beginning of the policy
	t2	–	�the end day of the winter season relative to the 

beginning of the policy

Another challenge in our data is the reliability of 
dates related to claims. There are two dates available, 
the date of the accident that caused the claim, and the 
date when the claim was reported. The wide variabil-
ity of time intervals between these two dates creates 
an additional challenge in the application of the Cox 
hazard model. To address these problems, as well as 
assumptions violations, we use a Bayesian nonpara-
metric approach to estimate the coefficients of the 
extended Cox hazard model (Kalbfleisch 1978).

7.  Bayesian approach

The Bayesian approach is based on a solid theo-
retical framework. The validity and application of the 
Bayesian approach do not rely on the proportional 
hazards assumption of the Cox model, thus, general-
izing the method to other time-to-event models and 
incorporating a variety of techniques in Bayesian 
inference and diagnostics are straightforward (Ibrahim 
et. al 2005). In addition, inference doesn’t rely on 
large sample approximation theory and can be used 
for small samples. In addition, information from 
prior research studies, if available, can be readily 
incorporated into the analysis as prior probabilities. 
Although choosing prior distribution is difficult, the 
non-informative uniform prior probability is proved 
to lead to proper posterior probability (Gelfand and 
Mallick 1994). Instead of using partial maximum 
likelihood estimation in the Cox hazard model, the 
Bayesian method uses the Markov chain Monte 

	 h0(t)	–	�the baseline hazard function, in our case—
the hazard function for one selected 
industry, by default, the last alphabeti-
cally ordered industry – Utilities.

x
if i j

if i j
j =

=

≠







1,

0,

)
=

−

−















1,
( 1

31

0,
- ( 1

31 )

season

if the claim happened during

winter season November st

March st

if the claim happened during

non winter season April st

October st
	 	–	�the coefficient of the time-dependent 

covariate

As there is no reason to prefer any specific 
industry for a baseline, we choose the last alphabeti-
cally ordered industry, Utilities. The selection of the 
Utilities industry as a baseline for hazard means that 
hazards for all other industries are estimated relative 
to that of the Utilities industry.

Calculation of time-to-event (survival) functions 
when we have time-varying covariates becomes more 
complicated because we need to specify a path or 
trajectory for each variable. For example, if a policy  
started on April  01, survival function should be  
calculated using hazard corresponding to season = 0  
for time-to-event t ≤ 214 days (from April  01 till 
November  01), while for time-to-event t > 214, 
using hazard corresponding to season = 1. For 
another example, if a policy started on August 01, 
survival function should be calculated using hazard  
corresponding to season = 0 for time-to-event t ≤  
92 days (from August 01 till November 01), and t > 
244 days (from April 01 till July 31), while for time-
to-event 92 < t ≤ 244, using hazard corresponding to 
season = 1.

Unfortunately, the simplicity of calculation of 
Si(t) is lost: we can no longer simply raise the base-
line survival function to a power. For our model, we 
develop an appropriate formula for the calculation 
of Si(t):
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starting from the beginning of the observation period 
or from the beginning of the policy, whichever  
happens later. CENSOR column indicates if the event 
is a claim (CENSOR=1), or if the event is the end 
of a policy (CENSOR=0). SEASON column indi-
cates if the event happened during the winter season 
(SEASON=1) or not (SEASON=0).

There are two covariates in the model: CLIENT_
INDUSTRY and SEASON_EVENT. CLIENT_
INDUSTRY is a categorical variable, so it is defined 
as the covariate in the CLASS statement and the 
MODEL statement. SEASON_EVENT is the time-
dependent covariate that represents the following 
component of the model: season × ln(t). SEASON_
EVENT is defined in the MODEL statement and in 
the expression that follows the MODEL statement.

class CLIENT_INDUSTRY;
model TIME_TO_EVENT*CENSOR(0) =  
  CLIENT_INDUSTRY SEASON_EVENT;
SEASON_EVENT = SEASON*log(TIME_TO_EVENT);

The BAYES statement requests a Bayesian analysis 
of the model by using Gibbs sampling.

In the BAYES statement, we specify a seed value 
as a constant to reproduce identical Markov chains for 
the same input data. We didn’t specify the prior distri-
bution, thus applying uniform non-informative prior.

The described PHREG procedure produces an 
estimation of  and  coefficients.

However, PROC PHREG does not produce base-
line survival function S0(t) when the time-dependent 
covariate is defined. To calculate the baseline sur-
vival function, we use the following workaround 
(Thomas and Reyes 2014):

data DS;
set CLAIMS_DATA_IL;
SEASON_EVENT = SEASON*log(TIME_TO_EVENT);
run;

data INDUSTRY;
CLIENT_INDUSTRY = “Utilities”;
SEASON_EVENT = 0;
run;

proc phreg data=DS;
class CLIENT_INDUSTRY;
model TIME_TO_EVENT *censor(0) =  
  CLIENT_INDUSTRY SEASON_EVENT;

Carlo method to generate posterior distribution by 
the Gibbs sampler: sample from a specified prior 
probability distribution so that the Markov chain 
converges to the desired proper posterior distribu-
tion. However, a known disadvantage of this method 
is that it is computation intensive.

8.  Deployment with SAS software

To estimate coefficients of the Cox hazard model, 
we use SAS software, specifically the PHREG pro
cedure, which performs analysis of survival data. The 
estimation of the Cox hazard model using a Bayesian 
approach by SAS PROC PHREG is implemented in 
the following way:

proc phreg data= CLAIMS_DATA_IL;
class CLIENT_INDUSTRY;
model TIME_TO_EVENT*CENSOR(0) =  
  CLIENT_INDUSTRY SEASON_EVENT;
SEASON_EVENT = SEASON*log(TIME_TO_EVENT);
bayes seed = 1 outpost = POST;
run;

CLAIMS_DATA_IL is an SAS data set that con-
tains data for the state of Illinois like industries, time 
intervals from the beginning of policies to date of 
claims, etc. The sample of rows from CLAIMS_
DATA_IL is presented in Table  2. CLIENT_ 
INDUSTRY column contains names of industries to 
which claims are related. TIME_TO_EVENT column 
contains the number of days to an event calculated 

Table 2.  Selected rows from CLAIMS_DATA_IL data set

CLIENT_INDUSTRY TIME_TO_EVENT CENSOR SEASON

 . . . . . . . . . . . .

Consulting 119 0 1

Consulting 162 0 0

Consulting 220 1 0

Entertainment 263 0 1

Retail 365 0 0

Retail 237 1 0

Transportation 95 1 0

Transportation 108 1 1

Utilities 7 1 0

 . . . . . . . . . . . .
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example, for the Entertainment industry, there is a 
72% chance that there will be no claims before the 
100th day of policy, and a 5.9% chance that there 
will be no claims at all for a one-year policy. In other 
words, the Entertainment industry in Illinois presents 
a 4.9% higher chance than the Utilities industry to 
have no claims during a one-year policy. Also, we 
can observe that Entertainment, Manufacturing, and 
Retail have very similar risks of claims in Illinois. In 
addition, there is strong evidence that the Consult-
ing industry has significantly lower risk than other 
industries.

The hazard function presented in Figure 4 shows 
that the instantaneous claims rate continuously 

bayes seed=1;
baseline out = BASELINE survival =  
  S covariates = INDUSTRY;
run;

This step produces baseline survival function S0(t).

9.  Interpretation of results

Estimations of β coefficients of the Cox model 
for each industry except Utilities are presented in 
Table 3. Because the Utilities industry is used as a 
baseline for hazard, the β coefficient for Utilities is 
equal to 0. Table 3 also contains the γ coefficient for 
SEASON_EVENT covariate.

For the purposes of comparing the risk of claims 
for different industries, we build survival functions for 
each industry, and season = 0 (Figure 3). According 
to the survival function for the Utilities industry, for 
example, there is a 58% chance that there will be no 
claims before the 100th day of policy, and there is 
a 1% chance that there will be no claims at all for a 
one-year policy.

The survival functions allow to estimate and to 
compare the risk of claims among industries. For 

Table 3.  Estimations of the model coefficients

Industry

Mean 
estimate  

of β Industry

Mean 
estimate  

of β

Consulting –2.282 Manufacturing –0.471

Entertainment –0.508 Retail –0.523

Finance –0.217 Utilities 0.000

Hospitality –0.145 SEASON_EVENT (γ) 0.277
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Figure 3.  Survival functions for industries in Illinois
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because we need to specify exactly when a specific 
policy started, and when, relative to the start date 
of the policy, the winter season occurred. A propri-
etary computer program has been developed by the 
authors to calculate Si(t) for each industry with  
the time-dependent covariate.

Below we compare two examples mentioned 
earlier: the case when the policy started on April 01 
and the case when the policy started on August 01.

If a policy started on April  01, then during time  
t ≤ 214 days (from April  01 till November  01)  
season = 0. Then, for the duration of time t >  
214 days till the end of the policy, season = 1. 
Thus, survival function is calculated using hazard 
corresponding to season = 0 for time-to-event t ≤  
214 days, and for time-to-event, t > 214 using hazard  
corresponding to son = 1. The survival function for 
this case is presented in Figure 5.

In comparison with Figure  3, where the winter 
season was not taken into consideration, we can see 

increases, achieving the highest claims rate around 
the 280th day of policy, and then slightly decreasing. 
We can also observe that the Consulting industry has 
a somewhat constant and relatively low claims rate 
through the duration of a policy. The hazard function 
in Figure 4 was produced with the SMOOTH SAS 
macro program (Allison 2012).

Time-dependent covariate SEASON_EVENT is  
significant with γ = 0.277 . This means that hazard 
ratio during the winter season in Illinois is 32% higher, 
controlling for the other covariates:

exp( ) − ≈ =0.277 1 0.32 32%.

Estimation of survival (time-to-event) function for 
a specific policy should take into consideration when 
the policy started – and thus when chances of claims 
increase due to the winter season.

Calculation of survival functions when we have 
time-varying covariates is not straightforward, 
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Figure 4.  Hazard function (instantaneous claims rate per day) for industries in Illinois
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to-event t ≤ 92 and t > 244 days, and for time-to-
event 92 < t ≤ 244 – using hazard corresponding to 
season = 1. The survival function for this case is 
presented in Figure 7.

In comparison with Figure  3, where the winter 
season was not taken into consideration, we can see 
that the proportion of survival drops before the 100th 
day of the policy.

For the Utilities industry, there is a 43% chance 
that there will be no claims before the 100th day 
of a policy accounting for winter season vs. 58% 
without accounting for the winter season. After 
that, the chance decreases, and by the 210th day of 
the policy, there is a 0% chance that there will be 
no claims in the Utilities industry, accounting for 
the winter season.

For the Entertainment industry, there is a  
67% chance that there will be no claims by the 
100th day of a policy when we take winter season 
in consideration– vs. 72% otherwise. Also, there is 
about 1% chance that there will be no claims at all 
for a one-year policy—in comparison with a 5.9% 

that the proportion of survival drops staring from 
the 214th day of the policy.

Both Entertainment and Utilities industries have 
a 0% chance that there will be no claims at all for a 
one-year policy when we take the winter season into 
consideration.

In fact, for the Utilities industry, there is a 0% 
chance that there will be no claims even before the 
270th day of the policy. However, the chances that 
Entertainment will “survive” without claims by the 
270th day are about 10%.

Hazard function presented in Figure 6 shows that 
the instantaneous hazard of claims sharply increases 
after t > 214, achieving highest claims rate around 
the 280th day of a policy term.

For the second example, if a policy started on 
August  01, then during time t ≤ 92 days (from 
August  01 till November  01) and t > 244 days 
(from April 01 till July 31), season = 0. Then, for 
the duration of time 92 < t ≤ 244 days of the policy, 
season = 1. Thus, survival function is calculated 
using hazard corresponding to season = 0 for time-
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Figure 5.  Survival function for industries in Illinois with SEASON_EVENT time covariate, 
and policy starting on April 01
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Figure 6.  Hazard function for industries in Illinois with SEASON_EVENT time covariate,  
and policy starting on April 01
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Figure 7.  Survival function for industries in Illinois with SEASON_EVENT time covariate, 
and policy starting on August 01
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In this case, the insurance during periods of lower 
risk will have a lower premium and, therefore, 
higher acceptance rate by customers. Referring to the 
example when a policy starts on April 01, a 6-month 
policy would have significantly lower risk and will 
justify lower premiums. The marketing of such new 
products will attract companies seeking workers’ 
compensation.

10.  Summary

An ultimate goal of insurance risk assessment is to 
create a profitable portfolio and to fit the right price 
to the right risk. This complex problem comprises 
from multiple parts, including estimation of risk, 
estimation of price, monitoring of market changes, 
and more. In our paper, we discussed one part of this 

chance when we don’t take the winter season into 
consideration.

The hazard function presented in Figure 8 shows 
that the instantaneous hazard of claims sharply 
increases around the 100th day of policy, achieving the 
highest claims rate between the 180th and 200th day 
of a policy term.

The information revealed by the presented models 
can be used for purposes of underwriting and pricing  
for the development of new insurance products, as 
well as for marketing. For example, insurers can 
estimate the risk of claims more accurately depend-
ing not only on the industry, but also on the time 
period when the policy is started. Insurers can better 
manage anticipation of losses related to claims. In 
addition, insurers can develop new workers’ compen
sation products for a duration shorter than one year. 
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Figure 8.  Hazard function for industries in Illinois with SEASON_EVENT time covariate, and policy 
starting on August 01
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complex problem – estimation of risk of workers’ 
compensation claims for different industries and 
states with season-dependent factor. Our method to 
estimate hazard function using a Bayesian approach 
allows estimating the risk of claims per industry 
and state, ranking industries by risk within states, 
as well as estimate risk depending on time-varying 
covariates like a season. As a next step to build a 
profitable portfolio, the severity of claims should be 
included in the analysis, which eventually will allow 
re-evaluating premiums and insurance products to 
increase the profitability of portfolios.
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